An Analysis of Gene Expression Data using Penalized Fuzzy C-Means Approach
نویسندگان
چکیده
With the rapid advances of microarray technologies, large amounts of high-dimensional gene expression data are being generated, which poses significant computational challenges. A first step towards addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. A robust gene expression clustering approach to minimize undesirable clustering is proposed. In this paper, Penalized Fuzzy C-Means (PFCM) Clustering algorithm is described and compared with the most representative off-line clustering techniques: K-Means Clustering, Rough K-Means Clustering and Fuzzy C-Means clustering. These techniques are implemented and tested for a Brain Tumor gene expression Dataset. Analysis of the performance of the proposed approach is presented through qualitative validation experiments. From experimental results, it can be observed that Penalized Fuzzy C-Means algorithm shows a much higher usability than the other projected clustering algorithms used in our comparison study. Significant and promising clustering results are presented using Brain Tumor Gene expression dataset. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. In these clustering results, we find that Penalized Fuzzy C-Means algorithm provides useful information as an aid to diagnosis in oncology.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملVector quantization in DCT domain using fuzzy possibilistic c-means based on penalized and compensated constraints
In this paper, fuzzy possibilistic c-means (FPCM) approach based on penalized and compensated constraints are proposed to vector quantization (VQ) in discrete cosine transform (DCT) for image compression. These approaches are named penalized fuzzy possibilistic c-means (PFPCM) and compensated fuzzy possibilistic c-means (CFPCM). The main purpose is to modify the FPCM strategy with penalized or ...
متن کاملGene Expression Data Mining for Functional Genomics using Fuzzy Technology
Methods for supervised and unsupervised clustering and machine learning were studied in order to automatically model relationships between gene expression data and gene functions of the microorganism Escherichia coli. From a pre-selected subset of 265 genes (belonging to 3 functional groups) the function has been predicted with an accuracy of 63-71 % by various data mining methods described in ...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1302.3123 شماره
صفحات -
تاریخ انتشار 2013